Manipulating the inter pillar gap in pillar array ultra-thin layer planar chromatography platforms.
نویسندگان
چکیده
An advantage of separation platforms based on deterministic micro- and nano-fabrications, relative to traditional systems based on packed beds of particles, is the exquisite control of all morphological parameters. For example, with planar platforms based on lithographically-prepared pillar arrays, the size, shape, height, geometric arrangement, and inter pillar gaps can be independently adjusted. Since the inter pillar gap is expected to be important in determining resistance to mass transfer in the mobile phase as well as the flow rate, which influences the mass transfer effect and axial diffusion, we herein study the effect of reducing inter pillar gaps on capillary action-based flow and band dispersion. Atomic layer deposition is used to narrow the gap between the pillars for photo-lithographically defined pillar arrays. The plate height of gap-adjusted arrays is modeled based on predicted and observed flow rates. A reduction in the flow rate with smaller gaps hinders the efficiency in the modeled case and is correlated with actual separations. A conclusion is drawn that simultaneously reducing both the gap and the pillar diameter is the best approach in terms of improving the chromatographic efficiency.
منابع مشابه
Nanoscale pillar arrays for separations.
The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. p...
متن کاملHighly ordered silicon pillar arrays as platforms for planar chromatography.
Unlike HPLC, there has been sparse advancement in the stationary phases used for planar chromatography. Nevertheless, modernization of planar chromatography platforms can further highlight the technique's ability to separate multiple samples simultaneously, utilize orthogonal separation formats, image (detect) separations without rigorous temporal demands, and its overall simplicity. This paper...
متن کاملIntegration of a Gradient Elution System for Pressure-driven Liquid Chromatography with Mems Fabricated Efficient Pillar Array Columns
This paper reports a gradient elution system for pressure-driven liquid chromatography (LC) on a chip. We have already reported the microfabrication of efficient pillar array columns with low dispersion turns. For faster and more efficient analysis, we fabricated a gradient elution system with a cross-Tesla mixer for the effective mixing of two solutions on a chip with a separation channel of p...
متن کاملDLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.
Particle sorting methods in microfluidic platforms are gaining momentum for various biomedical applications. Bioparticles are found in different shapes and sizes. However, conventional separation techniques are mainly designed for separation of spherical particles. Thus, there is a need to develop new methods for effective separation of spherical and non-spherical bioparticles for various appli...
متن کاملPlanar perovskite solar cells using fullerene C70 as electron selective transport layer
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 141 4 شماره
صفحات -
تاریخ انتشار 2016